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THE SIMTTARTTY RULES FOR SECOND-ORDER
SUBSONIC AND SUPERSONIC FLOW

By Milton D. Van Dyke
SUMMARY

The similarity rules for linearized compressible flow theory
(Gothert's rule and its supersonlc counterpart) are extended to second
order. It is shown that any second-order subsonic flow can be related
to "nearly incompressible" flow past the same body, which can be
calculated by the Janzen-Rayleigh method.

INTRODUCTION

The linearized small-disturbance theory of steady compressible flow,
based on the Prandtl-Glauvert equation, ylelds a first spproximation for
thin objects moving at either subsonic or supersonic speeds. More pre-
cisely, 1t provides the first term in an asymptotic expansion of the
golution for small disturbances, provided that the flight Mach number
is not too close either to unity (trensonic flow) or to infinity
(hypersonic flow).

The similarity rule that governs linearized subsonic flow past
general three-dimensional objects was first given correctly by Gothert
(ref. 1). It has an cbvious counterpart in supersonic flow, and the
rules have rendered great service in both theoreticsl and experimental
investigations. '

Recently, various investigetors have sought to improve on the line-
arized theory by finding higher approximations (see, e.g., refs. 2 to 5).
The second step 18 commonly referred to as the second~order small-
disturbance theory, or simply "second-order theory." It caen be found
in general by iterating upon the linearized solution, retsining all terms
out of the full nonlinear equations of motlon whose contribution is of
the order of the square of the disturbances in linearized theory (ref. 3).
In the simplest case of plane flow without stagnstion points, the line-
arized disturbances are proportional to the thickness ratio T of the
airfoil, so that second-order theory adds terms in T2, and higher
spproximations extend the series in powers of 12, Stagnation points
lead to the appearance of logarithmic terms, beginning with Tt%in T in
the fourth approximation. The series diverges in the immediate vicinity
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of stagnation points, although it can be corrected there by simple tech~
niques (ref. 6). Slender pointed objects, such as a smooth body of
revolution, cause smaller disturbances than airfoils, but logarithmic
terms elways arise at the outset; hence the linearized solution contains
termes in T2In T and T2, and the second-o#der increment then consists of
terms in .T4ln2r, T4ln T, and T4, Nothing is known of the convergence
of these seriesj they are perhaps only asymptotic expansions for small
thickness. Second-order theory, like linéasrized theory, bresks down in
the transonic and hypersonic ranges, though it mey penetrate somewhat
farther into their fringes.

A simllarity rule for second-order theory has recently been given in
the speclal case of supersonlec flow past thin flat wings by Fensiln and
Germain, who demonstrate its usefulness in theoretical studies (ref. 5).
However, as in linearized theory, the rulés for flat wings are only
gpeclal cases of those for general three-dimensional shapes. The present
peper is devoted to deducing the general rules for subsonlc and supersonic
flows, and exemining their iwplications. :In particular, it is shown how
the rule for gubsonic flow relates the second-order solution for eny
object to nearly incompressible flow past the same body, which can be
calculated by the Janzen-Rayleigh method.,:

DERTIVATION OF RULES FOR BCDIES OF REVOLUTION

A body of revolution 1s the simplest, shape that is not a special
case, but displays the full generality of the existing simllarity rules
for subsonic, supersonic, transonlec, and hypersonic flows. The same can
be shown to be true of the second-order rules to be discussed here.
Hence for clerity of exposition, the second-order rules will be derived
in detail only for an axisymmetric body at zero angle of attack. The
rules for general three-dimensional thin or slender objects will there-
after be stated without proof. The subsonic and supersonic cases are
g0 similer that they can be treated simultaneously.

Let the body be described by r = TR(x), where T is a thickness
parameter or characteristlc slope (say, the maximum slope, average slope,
thickness ratio, or the like), and
v R(x) is a function of order unity
t r=TR(x) (sketch (a)). As usual in similarity
analysis, the characteristic slope =
is regarded as & parasmeter, so that
gifferent values of T correspond to
X affinely related members of the same
family of bodies.

To second order the flow is
Sketch (a).- Notation for irroiat;gnal, so that there exists
body of revolution. a velocity potential &(x,r;M,7,T).

Vo
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This notation indicates that for each femily of bodies (associated with

a glven function R(x)), the flow field is regarded as depending not only
upon the two independent variables x and r bubt also upon the three
parameters following the semicolon:

M free-gtream Mach numbexr
¥ adiebatic exponent of gasl
T characteristic slope of body

The aim of & similarity analysis is to transform the problem sc as
to reduce the number of parameters eppearing in it. If that can be
accomplished, flows having different values of the original parameters
ere related provided only that the reduced parameters are equal. The
transformation to be used here consists in separating the dependent vari-
gble @ 1nto several components, and then stretching each component and
the independent verisbles by factors that depend upon the original param-
eters. It is convenient, and involves no loss of generality, to leave
streamwise coordinates unchanged, so that r 1is to be stretched but
not x.

Perturbation potentials are first introduced by setting

gL =X+ @ Qo o (1)
[+4)

where @. is the potential of linearized theory, and ¢ +the second-order
increment.

Rules for Linesrized Theory

The linearized problem is
O¢ = (l'M2)¢xx+¢rr+¢_;"=o
$ =0 &t infinity (2)

fp = TR (x) at r = TR(x)

lHayes has pointed out (ref. 7) that to second order an imperfect
gas corresponds to & polytropic gas having & ¥ equal to the free-

stream value of
1 3c€>
1+ ==
¢\ o4

where c¢ 1is the speed of sound and p +the density, the partial
derivative being taken st constant entropy s.




L NACA TN 3875

The first relation is the linearized Prandtl-Glauert equation. The
second is a statement, gsufficiently definite for present purposes, of

the requirement that the flow approach a uniform stream far from the body
in almost all directions. The third ia the linearized condition of tan~
gent flow at the body surface.® The linéarized problem is seen not %o
involve 7, so that the solutlon depends: upon only the two parameters

M and T.

The similarity rules can be obtained by consldering arbitrery scale
trensformetions of % and r. It is readily found that the only choice
that reduces the rumber of parsmeters from two to one is (temporarily
suppressing the dependence on parameters)

B(x,x) = ;—2 F(x,p) (38)
and _
p = Br (3b)
where

N1 - MR for sybsonic flow
B = (3e)

M2 -1 for supersonic flow

Then the problem becomes -

]
o

by
Fop + 7? t Py

F -0 at infinity (1)

= BvRY(x) 8t p = BTR(x)

where here and later the upper and lower signs apply, respectively, to

the subsonic and supersonic problems. -
The trensformations of @ and r hhve been so chosen that the

problem is reduced to one involving the;twgzparameters M and T notb

2Tn what 1s generally called the slender-body approximation, the
body is assumed to be so smooth and slehder that the tangency condition
can be imposed on the axis rather than on the actual surface, in this
case in.the form lim rfy = TR(x)R'(X). Thus slender-body theory is

a further approximation wlthin linearized theory (being, in fact, the
leading term in the asymptotic expansicn of the linearized solution for
small thickness T). Consequently, the slender-body solution obeys the
similarity rules of linearized theory, and the second-order slender-
body solution likewlise obeys the seconq-order gimilarity rules.
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separately, but only in the combination pgrT. This is the similarity
parsmeter. Two subsonic or supersonic flows past bodies of the same
family are related if the corresponding Mach numbers are such that the
parameter BT 18 the same for both. The nature of the relationship is
found by reintroducing the dependence on parameters into equation (3a),
which gives the similarity rules

¢(X,I‘;M,T) = 51_2 F(X:Br5BT) (5)

Second-Order Rules

The second-order problem is found to be (ref. 3)

Do = M¥[(y + 1)M® + 2(1 - M3)1@xfux + 20rfxr + ¢r2¢rr}

(6)
¢ —=>0 et infinity

@ = TPLR!'(x) at r = TR(x)

Note that the first equation contains not only quadratic terms on the
right-hand side, but also the triple product ¢r2¢rr whose contribution
is of second order in some cases.

The parsmeter ¥ appears only linearly in the combination (y + 1)

and can accordingly be separated out. Thus the appropriate transformation
is found to be -

ox,r) = & [f1<x,p) + W2 (x, 0047 + 1) 2 fe(x,p)] 1)

Then equeting like powers of M2 ylelds the following set of three
problems for f,,f5,fs in which the paremeters M,y,T appear again only
in the form of ‘the single similarity parameter gT:

D fl = 0
f1 >0 at infinity (8a)

P1p = BTELR! (%) at p = BTR(x)
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Ofy = £2FxFyy + FFy, + szFpp

fo =0 at infinity ) (8b)
fop= O at p = BTR(x)
J
\
Dfs = Fme{
fz => 0 . at infinity (8c)

fap= O at p = BTR(x)

J

Then reintroducing the explicit dependence on parameters into the func-
tions fq,fs,f3 of eguation (7) gives the similerity rules for the
second-order increment in perfturbation potential:

o(x,r3M,7,T) = 5 l:fl(x,sr,m) + M2, ()+(y + 1) X fs():' (9)

where the arguments of £, and f3 are the same as those of f;. Hereafter
the arguments of later {Terms will be omitted in this fashion when they are
the same as for the leading term. It should be emphasized that, just as
in linearized theory, the subsonic and supersonic rules are quite distinct,
although they have the same form (9). BecauBe of the different defini-
tions of B, and the resulting * signse in!equations (4) and (8b), a super-
sonic flow is nol related to a subsonic flow. Discussion of these results
is deferred to the general case.

RULES FOR GENERATL. BODIES

Consider a fanily of general
three~dimensional bodles, whose mem-
bers are derived from one another by
a uniform magnification or reduction
of all dimensions normsl toc the free
stream (sketch (b)). Each member of
such & family can be characterized,
as before, by some characteristic
slope; T, It mey be emphasized that
T cah be identified with thickness,
camber, Or angle of attack, all of
which vary together for related
bodies.

The preceding analysis can be

Sketeh (b).-
related bodies.

Exemple of two.

extended in a straightforward way to
such general bodies, at the expense
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only of typographic complexity. Both cross-stream dimensions behave in
the way that r did before. Hence the subsonic and supersonic second-
order rules for the velocity potential, corresponding to equations (5)
and (9), are, in Cartesian coordinates:

—- d’(X:YJZ M:?’:T) =X+ ==

T

BZ F(x,By,B2;BT) + -B—- [fl(x,sy,sz BT) + M2rp() +

(v + 1) “;—;‘ fs()] (108)

Differentiation yields the corresponding rules for velocity
components (those for w having the same form as for v):

4
%o =1+ BLZ U(x,By,Bz;BT) + Elz [ul(x,By,BZ;BT) + MPu()+(y + 1) % us()]
(10b)
4
%o -5 L v(x,py,B2;87) + e [vl(x,ﬂy,BZ;B'r) + M3 ()+(y + 1) l;—z Vs()]

(10e)

(The functions appearing here are actually related to derivatives of the
functions in eguation (10a), but the comnection is of little interest.)
To second order the pressure coefficient is given by

Cp = -26x ~ (By® + 65°) - 29, - 2(Byoy + F,0,)+(M2 - 1)¢,2 +
M2¢x(¢y2 + 8,2 + %; M2(¢y2 + ¢z2)2

where the terms in the second line may be significant for slender shapes.
Substituting the expressions (10) for velocity components and simplifying
shows that the simllitude for pressure coefficlent has the same form as
that for the streamwise velocity increment Au/Uk:
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Cp(x,y,23M,7,7) = {_315 P(x,By,Bz;BT) + % [P.l(x)BY:BZ;BT) + Mopa() +

(y +1) X ps()J - (10a)

The similarity rules for the perturbation stream function in plane
flow are the same as those for v/Uy (eqg. (10c)).

Alternative Forms _

As with other similarity rules, an unlimited number of alternative
forms can be produced by miltiplying by powers of the similarity param-
eter. Thus, of the mesny possible alternatives to the second-order )
rules (10d) for pressure coefficlent, two of the most useful are:

T Bx,pypaspn) + 12 [320) + #5040 + D B pa0 ] (200

Cp

Cp = 12B(x,8y,Bz5pT) + ﬂ[pl() 185040 + 1) 12 pao] (10£)

In addition, the first two second-order terms can be manipulated, using
the connection between M2 and B2, to yileld additional alternative forms
such as the following, which correspond to the three forms above:

Cp = B_ P(x,By,82387) + o3 [pl() + 2{2 pat Oly+1) 25 Pa()] (10g)
Cp = % B(x,By,Bz;BT) + T2 Pl() + -5 Bz 192'( J(y + 1) L ps():] (10n)
Cp = 72B(x,By,Bz;BT) + T4 szl() + pz'()+(7 +1) = Ps()] (101)




NACA TN 3875 9
Force Coefficients

The rules for pressure imply rules for the 1ift and drag coefficilents,
For example, equation (10e) leads to

ori7,7) = T3(6m) + 33 [1alen) + wralem)(r + 1) X 15(em) |

(103)

cp(M,7,7) %2 D(pT) + ;—2 [dl(sr) + M2d(pr)+(y + 1) %—2 ds(BT)]

(10k)

if the coefficients are referred to some plan-form area. If some cross-
sectional area is used, each term is reduced by one power of T, Various
alternative forms are again useful. In the case of 1ift coefficient,

one will ordinarily choose to identify <+ with the angle of attack.

RULES FOR QUASI-CYLINDRICAL BODIES

A special class of objects must be distinguished, which will be
termed quasi-cylindrical bodies., These are shapes that lie everywhere so
close to some cylinder (not necessarily circular) parallel to the free
stream that to a first spproximation the condition of tangent flow can be
imposed at the cylinder rather than on the actusl body surface. Likewise,
in second-order theory the tangency condition can be transferred to the
cylinder by Taylor series expansion. The simplest example 1s an ailrfoil
whose thickmess, camber, and angle of attack are so small that the tan-
gency condition can be transferred from the airfoil surface to a mean
plane parallel to the stream (sketch (¢)). Another example is an open-
nosed body of revolution whose radius veries only slightly. Others are
biplanes, cruciform wings, any of
these in an open or closed wind
tunnel, in combination with one

another, ete. .

A quasi-cylindrical body can be
regarded as consisting of a skeleton
upon which is superimposed a small A

slope distribution., The skeleton is
%

—)\

9

" g e e

simply the projection of the body
onto the basic cylinder. For

14

example, the skeleton of the quasi- _ T
cylindrical body of revolubtion is
the circular tube shown dashed in Sketch (e¢).- Examples of quasi-

sketch (c). cylindrical bodies.
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The special place of quasi-cylindricel bodies in similerity theory
arises from the facét that the skeleton anfi the slope distribution can be
variefl independently. This extra
freedom is important. For example,
1t leads to a useful transonic simi-
larity rtle for guasi-cylindrical
bodieg whereasg none exists for genersal
shepes. -It is convenient always to
leave! streamwise dimensions unaltered.
Hence', w& éongider families of quasi-
cylingrical bodles that are derived
from one another by a lateral com-
pression or expansion of the skele-
ton, and & qulte independent magnifi-
catioh or reduction of all surface

Sketch (d).- Example of two slopeg. Two members of such a family
related quasi-cylindrical are shown in sketeh (d).
bodies.

Distortions of the skeleton wlll be measured by some characteristic
"gspect retio" A. It is important to note that the term "aspect ratio”
is used here In a very general sense to mean any typlcal ratio of gross
crogs stream to streamwise dimensions. Fbr exemple, in the last shape
in sketch (c), the ratio of wind-tunnel height to airfoil chord is an
appropriate characteristic aspéct ratio. ! Changes of slope are measured,
ag before, by some characteristic slope =T.

The preceding simllarity rules can be simpliflied for quasi-cylindrilcal
. bodies by using the facts that first-order perturbation quantities are
directly proportional to T, and second-brder terms to T2, The simpli-
fication can be carried out by first imagining the quasi-cylindrical body
t0 be restricted to be a general body, which means that both BA and BT
muist be the same for similarity. Then consider the preceding rules in the
particular alternative forms in which = @ appears explicitly outside the
first-order term and T2 outslide the second-order terms. For the

pregsure coefficient, this form is that of equation (10e):

Cp = = P(x,By,BZ;BT,BA) + -B—— [151() + ¥25()+(y + 1) o Ps()]

So far the functions P,B,,P»,Dz have been supposed to depend para-
metrically upon both pBA and Br. However, the first- and second-order
terms can be proportional to T and 72, respectively, only if the supposed
dependence upon BT 18 nonexistent. Hence, the similerity parameter
is BA alone, and the rules for pressure, are (dropping bars from the
functional symbols):

3This is by no means true for general bodies; as noted previously,
the first-order pressure coefficlent on a smooth slender pointed body of
revolution varies ag T2ln T for small .
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Cp(x:y:Z5M57JTJA) = g P(x,By,Bz3BA) + 'g'zz‘ [Pl(x;BY:BZ;BA) + M2po() +

(y + 1) %; ps()] (11a)

The corresponding rules for the potential and velocity components cen,
if desired, be written down by lnspection from equations (10).

With ﬁz = pp *+ p, (where, as before, the upper sign applies to
subsonic and the lower to supersonic flow), these rules can be rewritten
as

Cp = % P() + TE[P:L() + %; B20)+(y + 1) %:- Pa()] (11v)

and this is the result that Fenain and Germain found in their treatment
of the flat diamond cone in supersonic flow {ref. 5).

Connection With Hayes! Rule

For plane flow past a single body, Hayes has discovered a remarksble
rule for the second-order surface pressure (ref., 7). It implies that,
on the surface, the functions in equation (1lla) are such that ps = 0
and p; = Ups. Hence,

w2 Ly + 1M + W1 - M®)

TR Pafx) (12)

Cp, =-§ P(x) +

In supersonic flow this is simply Busemann'!s well-known second-order
solutlion, P being twice the local slope of the surface and p,; twice
its square; in subsonic flow P and p, are more complicated (ref. 8).
This rule implies a corresponding, but more complicated, rule for
surface velocity (ref. 8).

In addition to the restriction to single bodies and plane flow,
these rules are not similarity rules in the sense of the preceding results,
because they apply only at the surface rather than throughout the field.
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EXAMPLES @ -

The rules will be illustrated by two' simple examples, attention
belng confined to the surface pressure coé&fficient.

Slender Circuler Cone in Supersonic Flow

Broderick has derived the second-order slender-body solution for a
clrcular cone at zero angle in a supersonic stream (ref. 2). The surface
pressure coefficient on a core of slope &+ i=s

2
Cp, = 12<2 ZnB—ZT- - 1) + 74[352<1n -5-29 - (M2 - 1)“15—27 +}-EM2 +3'2-+

4
(7 +1) “B‘—z] ; (13)

This hes the form of equation (10i) with !

=2 17n—-1 ' t = 4 oln = 4
P BT Pa BT L

- 2 2 . 13 . -
=31 =-51ln— 4+ =2 =1

P1 =3 Bt Bt T ~ Ps

Wevy Wall in Closed Subsoiilc Wind Tunnel
Consider the sinusoidal wall i P //“\
y =T eln x at a distance h . from S’ N N

a flat wall (or a distance 2h from
its mirror image) as indicated in Yy

sketch (e)}. Subsonlc flow between hT_l

the walls at a mesn Mach number M 4 T e ey W IO Ny A 2 |

can be readily calculated to second |

order by separation.of variables. R geesin x

The resulting pressure coefflclent

on the surface of the wavy wall is Ef_’)\ x
| "N
Sketch (e).- Wavy wall in
wind tunnel.

o
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-2fh ~2B3h ~48h
Cpg = '?lﬁ'g'_fﬁ—h sin x+ T2 (7+1)M4+h(];2-M2) Ly he 2 4 o747 cos 2x -
B 1-e28 k(1 - M2) (1 - e-2Bh)®
-28h M4 he~4Bh
12 — = — - +2(y+1) = T2 he 5 cO8 2% (1k)
(l - e'th) B ( 1+ e'th) (l - e'zﬁh)

The relevant aspect ratio is the height h (which is really a mulbtiple
of the height-chord ratio, because of the choice of scale for the wavy
wall). Thus the result is seen to have the similitude of equation (lla.) .
As the tunnel height increases indefinitely, the last ‘two terms disappear,
and the remainder follows the similitude of equation (12) for the surface
of a single plane body.

REDUCTION OF SUBSONIC PROBLEM TO
NEARTY INCOMPRESSIBLE FLOW

In linearized theory, an important applicaetion of the similitude is
Gothertts rule s Which reduces any subsonic flow problem to a related
incompressible flow (ref. 1). As the rule is usually stated, the incom-
pressible flow is that past a thinmer affinely related body. However,
the incompressible solution for one member of an affinely related family
of bodies determines that for all other members, so that the subsonic
flow may, if desired, be related to the same body rather than a thinner
one, and that viewpoint will be adopted here &as being the simplest.

In second-order theory, the expliclt appearance of terms in M2
and (y + 1)M* in equations (10) means that reduction to an incompressible
problem is impossible (except for the special case of the surface of a
single plane body, where eq. (12) spplies). The second-order problem
can, however, be reduced to a nearly incompressible flow.

Flows at low Mach numbers cen be calculated by the Janzen-Rayleigh
method, which involves iterating on the incompresslble solubtion to cbtain
a power series in M2, Thus the velocity potential is approximated by

<

T Q<X:Y:Z5M37:T) = ‘Do(x:Y:ZST) +M2<bl(x,y,z;-r) +
oo

(7 + 1)M%0-()+ M%)+ . . . (158)
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The two terms in M%* are ordinarily considered together, but for present
purposes it 1s essential to separate them because only 0, is required.
This 1s fortunate because 05 can be calcéulated almost as easily as @,,
whereas the determination of ¢35 is much more difficult.

The small-disturbance and Janzen-Rayleigh series represent two dif-
ferent asymptotlic expansions of the actual solution. They are believed
to complement each other, so that an expansion of the Janzen-Reyleigh
solution for small thickness must be identical with the expansion of the
smell-disturbance solution in powers of M?, as has been verified in all.
worked exsmples. Thils fact permits the small-disturbance solution to be
recovered from the Janzen-Rayleigh series. The converse is not true,
however, except for bodies without stagnation points, because the small-
disturbance expansion 1s not uniformly velid near a stagnation point.

Procedure for Recovering Second-Order Solution

Suppose that the Janzen-Rayleigh series of equation (15a) is known
up to the term in (¥ + 1)M*. Then expanding each term formally for small
thickness T, and retaining only second-order guentities, glves e double '
serles of the form '

L

T Q(X:YJZ;M:')';T) =[x + TaQOl(x’Y:Zi;T) + 7%02() + e . o] *
o] .

(7 + 1M 74020() + . . .1 + O(M*,78)  (15b)
Here @pni and dpnpo are, respectively, the first- and second-order com-
ponents of ¢n. Now also, according to the similarity rule of equa-

tion (10a) in the alternative form corresponding to equation (10f), the
seccnd-order smell-disturbance solution has the form

ﬁL o(x,y,2;:M,7,T) = x + 126(x,py,Bz;pT) + 74[g1() + MPga() +

(7 + 1) %; 33()J } 0{76) (16e)

and this can be expanded fully in powere of M2 by using Taylor series
expansions such as ; .
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g(By) = g(y) - %szg’ () + o(M*)

to give

-[-2;‘— o(x,y,2;M,7,T) =x + 12 {G(x,y,z;T) - %le:yGy() + 2G,() + TGT()] }+

.,-4{gl() - %le:ygly() + zg1, () + Tng():] +

W2 ()+(y + 1)M4g3()} + 0(+5 M%) (16)

If the two double series expansions (15b) and (16b) are identical, like
terms can be equated to give

G’(X:Y:ZET) = QOl(X,Y,Z;T)
g1(%,¥,2;7) = ¢oa(x,y,2;7)
1
g2(%,7,257) = 012(x,7,237) + 5 [Wozy() + 200p, () + T‘I’oa.r()]

gs(x,y,z;'r) = ¢22(x:y:zi'f)

Then substituting these expressions into equation (16a) expresses the
second-order potential in terms of the Janzen-Rayleigh solution as

ﬁl— ¢(X,Y,Z;M,7,T) =X + thbol(x,BY,BZ;BT) + T4 ¢02(X)By}BZ;ﬁT) +
(23]

Mz[‘blz() + % ‘I’OZBY() + 225 ‘I’oaﬁz() + EEI ‘I’ozﬁ_r()] +

(y + 1) 1:—: <1>22()} (1n

Here Qozﬂy(x,sy,ﬁz;ﬁ-r) means (3/3y)0oa(x%,y,2;7) evaluated at x = X, TR

Y =8y, z =gz, and v = BT, for example, Note that ®;1 1is not required.
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Application to Parabola

As an exsmple, conslder plane
y=TvVXx subsonic flow at zero angle of attack
past the parabole described by

y = V% (sketch (f)). The Janzen-
Rayleigh solution includlng terms
U in (¥ + 1)M* has been calculated -
by Imai (ref. 9). Although the
velocity potential is complicated,
1t simplifies when expanded in powers
of T %o

Sketch (f).- Parabola at zero .
angle of attack. -

o _ Ly2ema 0 =T _Lyz2, £+ 02
g = Xt ™o+ 5 MR §2+n2-8¥71n >
7 + 1y n4 §2+32}
Méw2| y — 02 4 ogp e 18e,
32 [(§2+q2)2 ; T2 (18e)

Here £&,n are parabolic coordinates related to the Carteslan coordinates
by

[(x - % T2) 4+ iy] = (& + )"

go that to second order

282 =Nx2 + y2 + X
(18v)

o2n2 =Nx2 + y2 -x

In this case the terms involved in equations (15b) and (17) are
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N
@01 = 4
oz =
-1 12 E2 + 12
¢12—_812[h§2+n2+zn—72_—] > (180)
.2 nt mﬁ]
P2 = T [h =+ 02 )

This example illustrates the fact that for planar systems these terms
are not of order unity in . Then according to equation (17) the
second-order small-disturbance solution is

o T- 1M < 72 E% + ﬁ2>
— =X +=1 -= 2(h ) 4 mm 2 0L}
Tw - * 780787 A 2.2

+ 1 M* 74 B2 4+ 72
7—32— Ez Tz[)-l- ﬁ—%ﬁ + in E#—] (199-)

where
2f2 =Nx2 + B2y2 + x

2fi2 =Nx2 + pZy2 - x

(19p)

This result is of Interest because it apparently camnot be found directly.
Plane small-disturbance flows can be calculaeted easily if one adopts the
thin-airfoll epproximation of transferring the boundary conditions to the
line ¥y = O by Taylor series expansion, but that spproximation fails near
round noses in the second approximation and, as & consequence, divergent
integrals arise (ref. 8). Instead, one can try to treat the round nose
more carefully using conformal mspping (cf. ref. 11, pp. 361-367), but
the result is found to be indeterminate to the extent of a multiple of
1n(E2 + §2). This is the potential of a point source at the origin,
which is an eigensclution, the proper multiple of which (eppearing in

eg. (19a)) is not determined by the suggested method.

The secqnd-order increment in equation (19a) is seen to include
terms in T2ln T, whose function is to render the argument of the
logarithm dimensionless. However, these terms are simply constants,
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so that no logarithms of thickness appear in the actual flow quantities
such as velocity and pressure. As remarked in the Introduction, loga-
rithmic terms in thilckness arise in the actual flow disturbances only
in the fourth approximation. :

The second-order small-disturbance golution for the streem function
can in the same way be extracted from Imai!s Janzen-Rayleigh solution,
and the result is found to agree with thet calculated directly by Keplan
(ref. 10) using conformal mepping. It contalns no terms in 1iIn T. (The
direct approach succeeds for the stream function, although it falls for
the velocity potential, because the tangency condition is imposed on the
mass flux, which is affected by the abové eigensolution.) Then using the
connections between the stream functlon and velocity potentilal, one can
verlify the correctness of equations (19),

CONCLUDING REMARKS

Utility of the Rules

The second-order rules are scarcely suited for correlating experimen-
tal data, since tests on four related bodies would be needed in order to
igolate the four functions involved. That they are, however, useful in
theoretical analyses has already been pointed out by Fenain and Germain

in the special case of supersonic flow
K pasti flat wings (ref. 5). Previous

investigators had calculated (erro-
neously, as it turns out) the second-
order solution for the flat dlamond
cone’ shown in sketch (g), and carried
out aumerical computations for three
différent Mach numbers and four values
of the paremeter p tan A (reported
in ref. 11). Because the latter is
the pimilarity parameter PBA of equa- .
. - tions (11), fallure to take adventage

- of the similitude resulted in three-

- fold' unhecessary duplication of
Sketeh (g).- Flat dlamond cone. compirting labor,

The reduction to nearly incompressiple flow assumes Importance for
bodies with stagnation points., The small-disturbance assumption is
violated, and, as was noted in the example of the parabolas, the second-
order solution consequently cannot be folnd directly. For bodies of
revolution the difficulties appear to be even more severe. In such
cases it 1is convenient to calculate the Janzen-Reyleigh solution, and
from it extract the true second-order solution by the procedure outlined

above.

Wi
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Further Extensions

The similarity rules can readily be extended to third and higher
order in the same fashion (except for complications in supersonic flow
because of the ultimate appearance of significant vorticity engendered
by curved shock waves). The similarity parameter remains unchanged;
the complexity arising in a proliferation of functione multiplied by

powers of (7 + ljnM?nB_ZP. Likewise, the small-disturbance solution to
any order can be recovered from the nearly incompressible solution
provided by an appropriate number of terms of the Janzen—Rayleigh
solution.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Oct. 18, 1956
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